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This study investigates the oscillation period of a system, comparing theoretically calculated values against experimentally measured
periods. The results demonstrate how variations in wire diameter and moment of inertia correlate with changes in oscillation period,
highlighting both the agreement and discrepancies between theoretical predictions and practical observations.

I. INTRODUCTION

Telling time is a crucial part of our daily lives. From alarms
waking us up to the start of a class or meeting, knowing
the time helps structure our entire day. This dependence on
timekeeping isn’t new—people have always needed a way to
track time. But a few hundred years ago, without digital clocks
or modern technology, how did they do it?

The answer lies in a simple physical phenomenon known
as oscillatory motion. To create oscillatory motion in clocks,
there are two main approaches: the familiar swinging pendu-
Ium, or the focus of this project...torsional springs.

In a torsion pendulum clock, the base rotates back and
forth with a regular period. This rotational oscillatory motion
is transferred into the clock’s gears through an escapement
mechanism, which moves with each complete oscillation.
That’s what keeps the time consistent and precise.

To measure time accurately with this type of motion, we
need to calculate the period of torsional oscillation. Equation
1 shows how to calculate the period of a torsional spring.
The two dependencies are the moment of inertia (I) and the
constant spring force (k).

T = Qw\/g (1)

To calculate the moment of inertia, Fusion 360 moment of
inertia calculator was used. To calculate the constant spring
force, the following equation was used.

GJ
K= T 2

The shear modulus, G, is given for a steel material to be 80
GPa. The length of the wire, L, was determined in the design
to be 0.15 m. The polar moment of inertia can be calculated
for a circular rod with the following equation:
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II. METHODS

The experimental setup consisted of a custom-designed
test stand, two distinct rotating masses, suspension wires of
varying diameters, and fastening components. All structural
components (test stand, rotating masses, and spacer block)
were fabricated using 3D printing technology.

The test stand (Figure 1) was designed to securely suspend
a torsional pendulum assembly. It provided anchor points for

Fig. 1. CAD rendering of the 3D printed test stand used to suspend the
torsional pendulum.

the suspension wire at the top and sufficient clearance for the
rotating mass to oscillate freely below.

Two rotating masses, designated Mass One (Figure 2) and
Mass Two (Figure 3), were designed and 3D printed. They
were intentionally designed to possess different moments of
inertia to investigate its effect on the oscillation period. Each
mass included a central bore for the suspension wire and
integrated set screws to rigidly fix the wire’s position relative
to the mass.

Fig. 2. CAD rendering of Rotating Mass One.
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Fig. 3. CAD rendering of Rotating Mass Two.



Suspension wires of four different nominal diameters (0.2
mm, 0.3 mm, 0.4 mm, and 0.5 mm) were used as the torsional
springs. Simple set screws were employed both at the top
anchor point on the test stand and within the rotating masses
to secure the ends of the wire. A 3D printed spacer block was
utilized during setup to ensure a consistent active length of
the suspension wire between the top anchor and the point of
attachment on the rotating mass for all trials.

For each experimental run, a specific diameter wire was
selected and cut to length. The wire was first secured at the
upper anchor point of the test stand using a set screw. The 3D
printed spacer block was then used to define the attachment
point for the rotating mass, thereby setting a consistent active
wire length. The chosen rotating mass (either Mass One or
Mass Two) was then carefully threaded onto the free end of
the wire until it reached the position defined by the specific
depth within the mass’s bore. The set screws on the rotating
mass were then tightened to firmly secure the wire.

Once assembled, the torsional pendulum was set into os-
cillation by applying a small initial angular displacement to
the mass and releasing it gently. The period of oscillation
was determined by measuring the time elapsed for one or
more complete cycles. Specifically, start and stop times were
recorded for distinct oscillation events, as detailed in Tables
1 and 2. This process was repeated for three trials for each
combination of rotating mass and wire diameter to ensure
repeatability and allow for the calculation of an average period.
Measurements were systematically conducted for both rotating
masses using all four wire diameters.

TABLE I
PERIOD MEASUREMENTS FOR ROTATING MASS ONE WITH VARYING WIRE
DIAMETERS.
Wire Diameter (mm) | Start (s) | Stop (s) | Measured Period (s)
3.96 5.12 1.160
0.2 6.51 7.64 1.130
8.95 10.31 1.360
2.53 3.07 0.540
0.3 3.58 4.09 0.510
6.18 6.69 0.510
0.72 0.99 0.270
0.4 1.29 1.57 0.280
242 2.71 0.290
1.07 1.26 0.190
0.5 1.45 1.62 0.170
1.81 2.00 0.190
TABLE 11
PERIOD MEASUREMENTS FOR ROTATING MASS TWO WITH VARYING WIRE
DIAMETERS.
Wire Diameter (mm) | Start (s) | Stop (s) | Measured Period (s)
2.35 4.64 2.290
0.2 7.08 9.43 2.350
11.75 14.18 2.430
1.01 2.33 1.320
0.3 4.95 6.36 1.410
8.98 10.39 1.410
2.82 344 0.620
0.4 4.79 5.39 0.600
6.17 6.78 0.610
1.98 2.39 0.410
0.5 3.28 3.73 0.450
4.20 4.63 0.430

TABLE III
CALCULATED AND AVERAGE EXPERIMENTAL PERIODS FOR ROTATING
MASS ONE WITH MOMENT OF INERTIA = 3.76 x 106 kg - m?2

Wire Diameter (m) | Calculated Period (s) | Average Exp. Period (s)
2.0 x 1073 1.339 1.217
3.0x 1073 0.595 0.520
4.0 x 1073 0.335 0.280
5.0 x 1073 0.214 0.183
TABLE IV

CALCULATED AND AVERAGE EXPERIMENTAL PERIODS FOR ROTATING
MASS TWO WITH MOMENT OF INERTIA = 9.40 x 10~ 6 kg - m?

Wire Diameter (m) | Calculated Period (s) | Average Exp. Period (s)
2.0 x 10~3 2.117 2.357
3.0x 1073 0.941 1.380
4.0 x 1073 0.529 0.610
5.0 x 103 0.339 0.430

III. CONCLUSION

The data collected in Tables 1 and 2 clearly demonstrate an
inverse relationship between the diameter of the suspension
wire and the period of oscillation for both rotating masses.
As the wire diameter increased from 0.2 mm to 0.5 mm,
the measured period decreased substantially. This observation
aligns with the theoretical understanding that a thicker wire
provides greater torsional stiffness (a larger spring constant,
k), leading to faster oscillations and thus a shorter period. Fur-
thermore, comparing the periods for the same wire diameter
between Mass One (Table 1) and Mass Two (Table 2) reveals
consistently longer periods for Mass Two, strongly suggesting
that Mass Two possesses a larger moment of inertia (I) than
Mass One.

Quantitative discrepancies exist between the calculated and
average experimental periods. While some pairings show
reasonable agreement (within 10-20 percent), others exhibit
more significant differences (up to 30 percent or more,
notably for Mass Two with the 0.3mm and 0.5mm wires).
These deviations could stem from several sources, including
uncertainties in the measurement of the wire diameter, poten-
tial inaccuracies in the assumed values for the moments of
inertia, variations in the material properties (Shear Modulus)
of the wire from standard values, or experimental factors
not accounted for in the simple theoretical model, such as
damping or slight imperfections in the setup. Despite these
quantitative differences, the experiment successfully illustrates
the dependence of the torsional oscillation period on both the
stiffness of the suspension wire and the moment of inertia of
the rotating body.



